A Business Process-centered Approach for Modeling
Enterprise Architectures

Torben Schreiter, Guido Laures

Hasso-Plattner-Institute for IT Systems Engineering,
University of Potsdam, Germany
{torben.schreiter, guido.laures } @hpi.uni-potsdam.de

Abstract: Mastering an Enterprise Architecture is crucial for the entire enterprise to
operate most efficiently. However, there is a lack of appropriate means to appropriately
visualize and communicate traceability from business processes to other enterprise ar-
chitectural entities such as e.g. the supporting IT infrastructure. Therefore, systematic
in-depth analysis of the entire Enterprise Architecture is barely feasible.

This paper aims to introduce a semi-formal and business process-centered mod-
eling approach for capturing complex Enterprise Architectures based on the well-
established modeling techniques BPMN (Business Process Modeling Notation) and
UML (Unified Modeling Language). A meta model formalizing the approach is pre-
sented.

It is feasible to apply customizable views tailored to stakeholder-specific concerns
providing standardized levels of abstraction to the model in order to improve commu-
nication of the big picture of an Enterprise Architecture. A case study illustrates the
approach.

1 Introduction

Today’s enterprises have to stay competitive with a number of competitors all over the
world. Streamlined business processes are a key factor leading to improved competitive-
ness. However, these processes are embedded in an entire Enterprise Architecture. A
proper enactment of the processes is still highly dependent on complex structures in the
Enterprise Architecture. This paper presents a business process-centered modeling ap-
proach enabling the effective communication of an Enterprise Architecture to different
stakeholders.

When speaking of Enterprise Architectures (EA), we do not mean architectures of enter-
prise application systems, which more precisely can be refered to as Enterprise Application
Architectures. Indeed, the proper definition of an EA seems useful in order to facilitate a
common understanding for the subsequent sections of this paper. The following definition
is slightly adapted from [Wi06].

Definition 1. An Enterprise Architecture is the current or future structuring of an orga-
nization’s processes, information systems, personnel and organizational sub-units, so that
they align with the organization’s core goals and strategic direction.

mailto:torben.schreiter@hpi.uni-potsdam.de
mailto:guido.laures@hpi.uni-potsdam.de

As an enterprise’s core competence is based on its EA, the whole enterprise is sentenced
to function inefficiently if the enterprise’s architecture is inefficient. Of course, enterprise
architectures, especially those of large companies, may become extremely complex. Mas-
tering the EA and its complexity is a non-trivial challenge. Therefore, it is our concern to
provide a means that can be utilized for the overall improvement of an EA.

The proposed concept for Enterprise Architecture Modeling should, consequently, cover
various aspects that are important for, firstly, communication of an EA and, secondly,
improvement of the EA. The conceptual basis for this is a business process-centered semi-
formal modeling approach. The supposed modeling technique enables the visualization
of a big picture of the respective EA. Considering the potential complexity of an EA, it
seems not feasible to provide this big picture using a single diagram. Instead, a set of
stakeholder-specific high level diagrams should be provided.

Modeling an EA, of course, includes IT infrastructural aspects that business tasks rely on.
The proposed modeling technique additionally covers organizational aspects that might
be necessary for fulfillment of a certain business task. Maintainability and extensibility
of the supporting IT infrastructure as well as the identification of business processes that
are particularly manpower-intensive are interesting aspects when planning or evaluating
an EA. Our modeling technique enables further investigation on issues like these.

This paper is organized as follows: Section 2 will introduce the basic concepts and key
objectives that underly the proposed modeling approach. The formal basis of the approach
in the form of a MOF-based meta model is presented in the third section. Next, a detailed
case study demonstrates a practical example using the modeling approach in the concrete
business domain of an insurance company. Finally, a brief survey of related work as well
as a conclusion is provided.

2 Conception of the Modeling Approach
2.1 Organizational and IT Infrastructural Aspects

Any modeling technique is based on a number of modeling elements. These elements are
then utilized by modelers in order to describe certain aspects of a system of any kind.

When modeling an EA, two different kinds of aspects might be part of a model. These
are either organizational aspects or IT infrastructural aspects of an EA. Thus, the set of
entities that are of interest for an EA modeling approach can, in general, be assigned to
one of the two kinds of aspects.

Entities such as business processes, organizational (sub-)units, entire companies, a com-
pany’s sites or roles cover different organizational aspects of an EA.

On the other hand, e.g. enterprise applications, web services, proprietary interfaces, busi-
ness process engines, EAI systems (Enterprise Application Integration), adapters, applica-
tion servers or other kinds of servers cover IT infrastructural aspects of an EA. Note that
the provided lists are not exhaustive.

2.2 Layering Structure

We would like to introduce a layered approach in order to describe an EA. More precisely,
a view on an EA model consists of (at most) five distinct layers.

Role layer. The role layer contains organizational roles in an EA. The roles can be required
for a particular business task in order to be completed. Roles of an EA may include
customer, head of department, accounting clerk amongst others. Additionally, the roles
might e.g. be assigned to a department or other (external) companies.

Presentation layer. All IT infrastructural systems related to presentation of digital con-
tent to users performing the tasks belonging to a particular role are visualized in the pre-
sentation layer. Examples for elements of this layer include different kinds of porzals,
(proprietary) rich clients as well as e.g. e-mail clients.

Business process layer. This layer contains elements like entire business process models,
process instances or tasks of a process model. Business process models on this layer
provide the definition for enactment by a business process engine.

Service layer. The service layer visualizes the service landscape of an EA. Additionally,
systems related to the accessability of the services are part of the service layer. These
systems are technically inevitable to support the provision of services. However, they do
not implement any business functionality. An application server utilized for exposure
of web services set up during service enablement of legacy systems can be named as an
example for this.

Please note that even though the layer is named service layer, this does not imply that the IT
infrastructure necessarily has to be based on the concept of a service-oriented architecture
(SOA) as described in [BuO0]. Thus, the service layer might also contain elements like
proprietary interfaces of legacy backend systems.

Backend layer. Software systems implementing primary business functionality as well as
supporting systems are part of the backend layer. E.g. ERP systems (Enterprise Resource
Planning), EAI solutions, and relational database management systems may be part of a
particular EA.

The business process layer is the central layer since we would like to facilitate traceability
to concrete business functionality at any time. This layer is modeled using elements taken
from the Business Process Modeling Notation (BPMN). The remainder of the layers is
based on elements taken from UML component diagrams. Please refer to section 3 for
further details.

2.3 Dependency Structure

Model elements, and therefore the layers containing these elements, are interconnected by
dependencies. More precisely, different entities of an EA might be dependent on other
entities of the EA and, therefore, require these for fulfillment of a certain business task.

Please find below a definition, which is valid for dependencies of enterprise architectural
entities.

Definition 2. A dependency D = (FEi, Es) exists between two entities Ey and Es of
an Enterprise Architecture if and only if the functionality of E; depends on the proper
functioning of Fs.

An exemplary dependency might exist between a business task of a business process and
arole, stating the fact that human interaction is necessary to fulfill this particular task.

It is important to notice, that the complex interdependent structure of an EA model pro-
vides very detailed information on how entities of the EA are interrelated. Moreover, a
key property of dependencies is their transitivity.

Theorem 1. Dependencies are transitive. This means that if there exists a dependency
Dy = (E4, Es) and a dependency Dy = (Fs, E3), then there is also a dependency D3 =
(E1, E3).

Not only due to modern multi-tier architectures of supporting enterprise IT systems, tran-
sitiveness of dependencies is, practically, a very common pattern in almost any EA. If, for
instance, a business task is performed by invocation of a composite web service, there is,
first of all, a dependency between the task and this particular service (the task is depen-
dent on the service). The composite web service is dependent on a number of other web
services. And these are again dependent on some backend systems providing the function-
ality that is exposed by the web services. The backend systems might again be dependent
on other backend systems such as a database management system. Because of the transi-
tivity of dependencies, the original business task invoking a web service is also dependent
on all the other entities involved in the provisioning of this service.

When elaborating further on the example of web services, independence of interface de-
scription and its implementation, often, is an important aspect. Indeed, the provided func-
tionality of the service is what matters, regardless of how it is implemented. Nevertheless,
when evaluating and analyzing an EA, we want to be able to trace dependencies to as many
supporting entities/systems as possible. Naturally, this is mostly impossible when using
web services from external providers. But still, we are able to derive a dependency from
the external web service to its provider (as an organization) since the provider is respon-
sible for the proper functioning of its IT systems. Consequently, the business task relying
on this external service is dependent on the external provider.

2.4 Annotation of Enterprise Architectural Entities

Entities that are part of an EA sometimes have several properties or constraints that might
be advantageous to be aware of. In an EA model we would like to be able to capture these
properties and constraints appropriately. We propose the annotation of model elements as a
means to visualize these aspects. Therefore, annotations enable a more detailed description
of the EA.

There can be different types of annotations. Very few annotations are implicit like branch-

ing conditions of sequence flows in a business process model for instance. Some other
annotations might have to be defined manually such as e.g. the maximum duration of a
business task. And then, it is even feasible that some annotations can, to a certain extent,
be automatically derived by supporting tools.

Let us consider an exemplary monitoring framework for a business process engine, which
is able to provide statistical information on the enactment of processes. If there is a branch
in the business process model, normally, the alternative flows are differentiated by condi-
tions. The conditions are now seen as annotations of the sequence flows (arcs) to the next
activity. Additionally, the monitoring framework provides information on the probabilities
of each branch alternative as a percentage. This would be the probability for taking this
particular alternative based on the preceding enactment history of the process. Of course,
this can be visualized as another annotation of the sequence flow.

It is an important characteristic of annotations, that they can be transitively passed on
to other annotatable elements. Figure 1 depicts the previously introduced example for
branching probabilities. In addition, there is a second, nested branch shown. The alterna-
tives again are annotated with condition and probability. Task Ia is additionally annotated
with a maximum duration of 120 seconds. This task is now dependent on some other entity.
All previous annotations are passed on to the dependency. Consequently, the dependency
is only relevant if the branch is chosen and this, again, only occurs in 1% of all cases.
Please note that the probabilities have been accumulated since a basic pass-on would not
be sufficient. The maximum duration has to be handled with care because the duration
might be reasonable if there is a single dependency to e.g. a web service. However, if
there are multiple dependencies to various types of entities, it might not be reasonable to
pass this annotation to any of the dependencies at all.

maxDuration: 120 s

\\ [cond1a]

\ 1%
\

[cond1a]
10%

[cond1]
10%

\maxDuration: 120s

N
Figure 1: Example for transitivity of annotations.

Additionally, the annotation of redundancy information is a very practical example for
annotation of dependencies. It is very common that important IT systems such as e.g.
application servers are held redundant in order to compensate failure of a machine. If sim-
ply denoting a dependency from an entity to each of the redundant machines, we would,
according to definition 2, semantically define that the entity is dependent on each of these
machines. Of course, we would prefer to express that the entity is only dependent on one
arbitrary of the machines instead of being dependent on all of them. This is a typical use
case for a redundancy annotation.

2.5 Customizable Views

As we declared human communication of the EA to different stakeholders to be a main
objective of the proposed modeling approach, it is desirable to satisfy the specific needs
of these stakeholders of an EA. We suggest the facility to create customizable views pro-
viding precisely defined levels of abstraction. Each view is intended to serve a particular
purpose tailored to the needs a stakeholder might have.

One stakeholder towards an EA is possibly a manager. Another stakeholder could be a
system administrator. Both have very different attitudes towards the EA. The manager is
primarily interested in streamlined business processes whereas the system administrator is
concerned with the maintenance of the supporting IT systems. Accordingly, the visualiza-
tions should show the aspects that are of interest for the specific person.

Since a number of views can be seen as applicable to different enterprise’s architectures, it
is viable to provide this generic set as predefined views. Additionally, it should be possible
to enable custom view definitions. See section 3 for a formal definition of views as well as
section 4 for a view definition example.

A custom view, ideally, only shows the subset of enterprise architectural entities that are
of interest for the particular stakeholder it is intended for. The transitivity of dependencies
and annotations enables the derivation of implicit dependencies and annotations that exist
even though some intermediate entities may not be shown in a particular view. If a business
process is e.g. dependent on a number of services and these services are, again, dependent
on some backend system, it is possible to derive a dependency from the process to the
backend system, even if the whole service layer is undisplayed.

3 The Meta Model

This section aims at formalizing the proposed approach by introducing a meta model. It
should be based on the Meta Object Facility (MOF) defined by the Object Management
Group (OMG) since MOF already provides all concepts needed for definition of a meta
model. Please refer to [Ob06a] for further information on the Meta Object Facility. Our
modeling approach is based on the well-established modeling techniques UML (Unified
Modeling Language), as specified in [Ob05a] and [Ob05b], and BPMN (Business Process
Modeling Notation), which is specified in [Ob06b].

This paper does not intend to provide a complete specification of the proposed modeling
approach. The meta model is rather to be seen as a basic formal definition of how to
relate the diagram types UML and BPMN for possible future research on the field of EA
modeling.

All layers except for the Business process layer are based on UML Component diagrams.
As shown in figure 2, the elements of each layer are specializations of the meta class Com-
ponent taken from [Ob05b]. This is advantageous, because we then inherit all properties
from the UML meta class component, but still are able to distinguish between different

«metaclass»
Component

4|>

RoleLayer PresentationLayer ServiceLayer BackendLayer
«metaclass» «metaclass» «metaclass» «metaclass»
RoleLayer PresentationLayer ServiceLayer BackendLayer

Element Element Element Element

Figure 2: Layer elements based on UML Components.

layer’s elements. This, again, is necessary for formal view definitions, as described in
section 3.2.

When utilizing UML Components for our purposes, we do not exactly interpret them the
way it is stated by the OMG. [Ob05b] describes UML Components as follows:

[...] In particular, the [Components] package specifies a component as a mod-
ular unit with well-defined interfaces that is replaceable within its environ-
ment. [...]

[...] The Components package supports the specification of both logical com-
ponents (e.g., business components, process components) and physical com-
ponents (e.g., EJB components, CORBA components, COM+ and .NET com-
ponents, WSDL components, etc.) [...]

Our interpretation of UML Components is more abstract. We propose to model (human)
roles and IT systems like application servers as specializations of Components, for in-
stance. In our case, we are more interested in the definition and syntax of Component
diagrams rather than in the methodology and intention of UML. Furthermore, we only de-
fine very basic elements for these four layers. Currently, further specializations of e.g. the
meta class BackendLayerElement in form of other meta classes like Adapter or Database-
ManagementSystem is not intended. However, staying this generic does not pose any
difficulty since both the organizational structure as well as the IT landscape of a particu-
lar enterprise might consist of a wide variety of elements. Therefore, the elements to be
used should not be restricted to a limited set of specific elements but the definition should,
instead, be rather abstract in order to be generic enough.

3.1 Annotations and Dependencies

Annotation of elements is accomplished as depicted in figure 3. There is a general, ab-
stract meta class Annotation which is always related to at least one NamedElement'. Fur-
thermore, each Annotation may be related to a number of other annotations due to the

I NamedElement is the meta class taken from UML, we will utilize as base class for all elements of the meta
model. Please note that also Component is a NamedElement.

property of transitivity. This set is derived from the model.

Additionally, there are two specializations of Annotation: DependencyAnnotation and
BusinessProcessAnnotation. As stated in section 2.3, the idea of elements is that they
can be dependent on other elements. Thus, we relate a Dependency (defined in [Ob05b])
to an arbitrary number (including 0) of DependencyAnnotations.

EnterpriseArchitectureMetaModel |

——

«metaclass» AnnotatedElement «metaclass» 0..*
NamedElement | ; . Annotation ot
supplier 1.* 1.* client éﬁ
) «metaclass» «metaclass»
metaclass DepAnnotation .
D;penden):: Dependency BusinessProcess
Y 0.* Annotation Annotation

Figure 3: Definition of meta classes related to annotation of elements.

A Dependency is defined as an n:m relation between NamedElements in [Ob05b]. This,
at first glance, seems to be not completely aligned with the provided definition in section
2.3. We defined a dependency as binary relation between enterprise architectural enti-
ties. However, the n:m relation for dependencies defined by [Ob05b] can be seen as an
aggregation of multiple dependencies into one modeling element.

Moreover, we introduced a redundancy annotation for dependencies. This can be seen as
a special case. Multiple dependencies to different elements annotated as redundant are
rather to be seen as a set of dependencies of which only a subset (whose cardinality often
equals 1) is necessary for proper functioning.

As we motivated before, the annotation of some elements in the Business process layer is
desired as well. These annotatable elements are:

e Activities (such as tasks and sub-processes)
e Branching sequence flows (outgoing arcs of (X)OR gateways)

e Business processes (as a whole)

Elements in the Business process layer are based on BPMN. Please note that the current
OMG-specification does not provide a formal meta model by itself. Only attributes and
types of these attributes are defined in [Ob06b]. However, it makes sense to define at least
the most important elements as interrelated meta classes and integrate these into the meta
model. Original attribute specifications are, of course, considered.

«metaclass»
NamedElement

EnterpriseArchitecture
BusinessProcessLayer [‘ MetaModel

«metaclass» «metaclass» «metaclass»
BusinessProcess BusinessProcess |— BusinessProcess
Element 1x Model Annotation

o S

«metaclass»
ConnectingObject

ProcessAnnotation| | |0.* «metaclass»
«metaclass» Dracess i

FlowObject ;
| Incoming Annotation
SequenceFlow

0.* «metaclass»
SequenceFlow

Outgoing
ConditionType: String CondAnnotation «metaclass»
«metaclass» 0..#| ConditionExpression: Expression Flow

Event 0.* Annotation
«metaclass»
Gateway
«metaclass»] Activity
Activity 0..% Annotation

Figure 4: Meta classes for BPMN key elements and relation to annotation.

Figure 4 shows that there are basically two types of elements in the Business process
layer. These are BusinessProcessElements and BusinessProcessModels. A BusinessPro-
cessModel, ideally, contains a number of elements. Interdependency of the elements is fa-
cilitated due to the specialization of the meta class NamedElement. As defined by [Ob05b],
the meta class Dependency relates any NamedElements.

The abstract meta class BusinessProcessElement is specialized into FlowObjects and Con-
nectingObjects. These meta classes are directly appendant to the corresponding concepts
of BPMN. A FlowObject can be an Event, Gateway, or an Activity. A ConnectingObject
can e.g. be a SequenceFlow.

Furthermore, there are three different BusinessProcessAnnotations and their respective as-
sociations to elements of the Business process layer shown. An Activity might be annotated
with an ActivityAnnotation. This is similar for BusinessProcessModel and ProcessAnno-
tation. But then it is slightly different in case of the FlowAnnotation. [Ob06b] defines
the attributes ConditionType and ConditionExpression enabling to distinguish whether a
SequenceFlow contains a condition or not. Since simple sequence flows do not carry
an additional meaning and it is, therefore, not reasonable to annotate these, we have to
restrain the use of a FlowAnnotation to those SequenceFlows carrying anything but the
value ”"None” for the attribute ConditionType.

3.2 View Definition

In section 2.5 we described the use of customizable views on the EA model. Now, the
mechanisms for defining these custom views are introduced.

The definition of views is based on the facility (provided by UML) to define Profiles and
apply these on diagrams [Ob05b]. A View, thus, is a specialization of the meta class Profile
as depicted in figure 5.

«metaclass»
Package

,—l

«metaclass» «metaclass»

Profile ownedstereotype | Stereotype ViewDefinition
AN ZAN

«metaclass» 1 * «metaclass»
View Layer

visibleLayer
{redefines
ownedStereotype}

Figure 5: Definition of stakeholder-specific views.

Originally, a UML Profile contains a number of Stereotypes. These Stereotypes can then
be applied to meta classes. Similarly, a View contains Layers in our case. Usually, there
should be five or less distinct layers used for the definition of a view?. Each of which
corresponds to the layers presented in section 2.2. A custom view then defines the elements
that are to be shown by assigning a meta class to a particular layer. This is accomplished
by using the UML concept Extension as defined in [Ob05b].

Finally, a view is applied to the EA model. As a result, only the elements based on the
restricted set of meta classes is displayed. Please refer to section 4 for an example of view
definition.

4 Case Study

This section introduces a case study in order to illustrate the presented EA modeling ap-
proach. Similarly to [PT06], this case study will be situated in the business domain of a
fictive insurance company. The resulting EA model, thus, describes (a part of) the enter-
prise architecture of this company. Since our approach is business process-centered, we
necessarily need information on the business processes that are part of day-to-day business
of the insurance company. For simplicity reasons we assume, that the business processes

2Please note that we do not intend to restrain the number of layers to be defined in a view. This would,
theoretically, facilitate the definition of multiple layers of the same kind or even other layers. However, we
recommend to only define one layer of the same kind per view.

have already been defined and optimized. We furthermore assume that the business pro-
cesses’ activities are supposed to be (partially) implemented by web services. Invocation
of the services should be realized using a BPEL engine.

As part of a service enablement project the company needs to define its EA model in sub-
sequent steps to be able to identify the IT landscape’s pain points as well as to track the
project’s progress. The first step is to define the concrete dependency structure for each
of the web services to be developed. This means that for each web service, it should be
described, which IT systems provide its functionality. The resulting dependency structure
is the basis for the EA model. Other parts of the model can be derived from the BPEL
processes, since these already define associations from the business activities to the imple-
menting web services. Some other dependencies have to be defined manually.

g
: X x X
o
2 Customer Clerk Big Boss
= il A N [expenswe]/7
< /
28 ! a
25 B N / Bankin
> /| ’ N g
S3 Customer Portal / L Company Portal " J Rich Client
g4 / , N
g 4/ T R A = %
i i / V4 [expensive] \ N 7
/ / AN
/
= / / Review [expensive]
2 / J Claim N
) i
- [N .
@ [. L
@
4
S Send Settle
[Documents i i Claim
@ 1 |
A i 1 —<
4 ! i NN
= I 1 N
2 Receive/Scan q [expensive] | | [expensive]
@ g Documents 0 i i N
/ 1 | i Y
! | i ! 2 ~
i ! | | i AN N
) T i I % < ~
; y y ’ y / AN ~
o Staff Request (1) (@) Receive
B Send File Claim Claim Claim Archive «proprietary» “«proprietary»
3 Document Document Information ~ Approval Approval Claim Receive Send
2 £} o Money Money
> ! / | Application Server \ \ /
@ ~ / \ (for Service provisioning) \ \ /
2] / | \ \ /
! Te T H \ \ /
] / S~ o~ J \ \ /
v /A = =V N N 2
1]
z Document Management System Claim Processing System Financial System
Z g y: g Sy y:
i
2 < % =
%’ N VA
EAIl
3 | Database Management System |<f~| Solution

Figure 6: View on all layers of the EA model for the business process ProcessinsuranceClaim.

After the EA model is constructed using our modeling approach, it is possible to define
views on the model. Figure 6 shows the complete dependency structure for the simple
business process ProcessinsuranceClaim. This view includes all five layers. Starting from
left to right in the business process layer, the customer first has to initiate the claims pro-
cessing by informing the insurance company of the claim. In this example, the customer
enters the claim details through the Internet using a customer portal. The web services
CreateClaim and EnterClaim are invoked as a result of the customer’s initiation of claims
processing. A dedicated application server is responsible for the exposure of these web

services. It is not responsible for the services” implementation®. The services depend on
the backend systems Claim Processing System and a Database Management System. After
the initiation, a clerk reviews the claim. During the process of reviewing a claim, several
documents have to be sent and others are received. After the claim was reviewed, it de-
pends on the arising expenses whether the clerk’s superior has to approve the settling of
the claim or not. Consequently, the dependencies to the web services as well as to the role
are annotated with the condition expression of the branching sequence flow in the business
process. When settling the claim, the clerk has to use a rich client for the bank transfers,
since the company portal does not support this functionality. This rich client uses propri-
etary interfaces of a financial backend system, which is not (yet) service enabled. Finally,
the claim is closed and archived.

This example of a simple business process illustrates very well, how complex an EA can
become when considering several dozens of more complex business processes and in other
conceivable cases an even more heterogeneous IT landscape.

«view»

RoleLayer Management
«metaclass» aver
RoleLayer < «ayer>

RoleLayer
Element Y
BusinessProcessLayer

«metaclass» «layer»

BusinessProcess |« BusinessProcess
Model Layer

BackendLayer

«metaclass» |

BackendLayer «ayer
Elementy BackendLayer

Figure 7: Definition of the Management view.

A view showing all layers as depicted in figure 6 is very detailed and contains (technical)
aspects such as particular web services, which are not of primary interest for the insurance
company’s management. Thus, we define a custom view in order to meet the specific
needs of the managers. Figure 7 shows this view definition. Presentation layer as well as
the service layer should not be displayed at all. The business process layer should contain
business process models instead of a single process model’s details.

This results in a high level view on the EA model as depicted in figure 8. It shows two
business process models in the business process layer. The first one is the same process
as described above. It is obvious that the dependencies of the respective business tasks

3Please see section 2.2 for an explanation.

were aggregated into dependencies of the business process model. Additionally, the de-
pendencies to backend systems were derived from the ones that exist between elements in
the service layer and the backend systems.

The second business process describes the regularly performed billing of a customer,
which is fully automated. Thus, the process model is not dependent on any role. On
the other hand, there are dependencies to a billing system, which again is dependent on
different other systems.

g
g X X X
4
% Customer Clerk Big Boss
x N ; —7
\ 7 [expensive] -~
_ \ 7
3] i
& 3 -
a o
o« 5 =
@ 5 2a
8 3 E g5
o £s S E
a 20 32
P 3 o3 \
8 g © .
£ a
) el \
S -~ T
@ \ S~ i \
\ et | \
\ - ~~—_ | \
- - \
\ e Sl \
== | R \
\ 22 v e N
Documeg&yg:g‘agemem Claim Processing System Billing System —= Financial System

Sa v .’ ~

EAI
Solution

Backend Layer
/

Database Management System |

Figure 8: Management view applied on the EA model.

Diagrams like these help to communicate a big picture of the EA to different stakehold-
ers. In this particular case, the management is able to establish an understanding of how
business processes are related to organizational roles and the basic IT infrastructure. Apart
from monitoring the service enabling project it is also conceivable to e.g. track how many
processes rely on the recently purchased document management system. In combination
with information on the status of employees (role instances) based on e.g. sick reports and
vacation, an identification of bottlenecks is possible.

Similarly to the management view, it is possible to define a maintenance view concentrat-
ing the aspects that are of interest for the maintenance staff.

5 Related Work

The approach presented in this paper is the logical continuation of the IT landscape spec-
ification formalized by Breest [Br05]. It bases on well settled standards like the Unified
Modeling Language [Ra97] and the Business Process Modeling Notation [Ob06b]. We
combined the meta models of these techniques to form a new meta model for the entire
EA. There have already been efforts spent to define comparable models.

The Common Information Model (CIM) [DmO05] provides a common definition of man-
agement information for systems, networks, applications and services. However, it is not
possible to apply CIM to functional elements like business processes. It focuses more on
the structural elements which are settled in the lower layers of our approach. Our means
for dependencies is slightly aligned with the CIM definition.

Another approach to define a formal notation for all kinds of elements of an IT infrastruc-
ture is the Reference Model for Open Distributed Processing (RM-ODP) [1s95]. Much
like the approach presented in this paper the RM-ODP defines viewpoints on a model in
order to provide stakeholder-specific views. However, this model focuses much on tech-
nical issues of distributed information processing (e.g. streaming) and does not deal with
enterprise entities from our higher layers (e.g. roles, business processes).

The Unified Modeling Language concentrates on the analysis and design of object-oriented
applications. The coarse-grained entities of an EA are poorly reflected in the core con-
cepts of this language. The dynamic and functional parts of the UML are rarely used to
specify business processes. They are best suited for specifications of internal application
flow. However, the concept of UML profiles is very useful for the definition of different
views and the UML meta model provides the extension capabilities to define new con-
cepts. Thus, we decided to use UML profiles for view definition and to derive our new
modeling concepts from the UML meta model.

The ARIS tool set [Sc98] is widely spread in today’s industries to define high level business
processes. It uses the Event-driven Process Chain (EPC) [KNS92] notation to specify busi-
ness processes of enterprises. However, it lacks a formalization for the business process
reflection in the implementing IT infrastructure. Thus, it does not provide the traceability
we need for our approach.

The Web Service Architecture [W304] describes a lot of concepts surrounding the entire
web service area. These contain also entities like processes, tasks, agents and so on. How-
ever, it is less formal than the approach we presented. The dependencies described within
this architecture aim at a basic understanding of a typical web service scenario rather than
on a formal specification that could support use cases like those mentioned before.

The ArchiMate project [Jo03] elaborated an EA specification language. Our approach is
very much aligned to that from this project, however, we focus more on the transitivity of
dependencies between the architectural entities as well as on the concept of annotation.

Although the above related work results show that there is a complete language coverage
of separate architectural concepts, there is still a lack of integration between them. We,
therefore, focused on an integration and reuse of the best-of-breed of these languages.

6 Conclusion

We presented a business process-centered modeling approach aiming at the description of
complex dependency structures within an Enterprise Architecture. The dependency struc-
ture is implicitly existent in any EA. Due to efficient visualization of the dependencies and

annotation of these dependencies with non-functional information, it is, for the first time,
possible to explicitly visualize and communicate these complex structures. The approach
is based on the well-established modeling techniques UML and BPMN. A MOF-based
meta model was provided, formalizing the approach.

Furthermore, we provided a facility to define customized views on the EA model tailored
to the specific needs of different stakeholders. This enables the effective communication
of complex EAs in form of a big picture of the EA covering the aspects of interest for each
particular stakeholder.

Finally, the approach was illustrated in a case study. A practical use of the approach was
depicted. The added value of the approach during and after a service enablement project
features improvement of communication and analysis as well as optimization of the EA.

However, there is still a number of aspects that might be subject of further research. Vari-
ous (semi-)automated auditing techniques for an EA such as impact analysis, availability
analysis, and performance analysis based on metrics and heuristics are conceivable. All
auditing is enabled due to traceability of dependencies between enterprise architectural
entities and their annotation. Depending on the kind of analysis, automated report gener-
ation might be desirable. In other cases, it might be interesting to interactively simulate
certain scenarios in order to investigate issues that, otherwise, would only appear when
actively modifying the EA. So, it is, to a certain extent, possible to investigate issues that
are mostly inherent with major changes to an EA even before actually changing the EA.
Concrete heuristics and metrics are to be identified in order to facilitate auditing of EAs.

Next, our approach is based on the assumption that it can be seamlessly integrated into a
business process engine enacting the business processes. This integration might prove to
be a complex task. Then, for reasonable and extensive annotation of elements with non-
functional information it is, possibly, necessary to access different frameworks such as e.g.
a monitoring framework providing statistical information on process enactment.

Generally, the approach should be applied in a real company in a productive environment
in order to prove its added value and to, eventually, improve or redesign details. It might,
for instance, turn out that a hierarchical structuring of organizational entities (such as com-
panies, departments, roles) is advantageous in certain situations.

References

[Br05] Breest, M.: Specifying Service Landscapes. Seminar Reader of the Hasso-Plattner-
Institute, 2005
http://bpt.hpi.uni-potsdam.de/twiki/pub/Public/SeminarPublications/ReaderBPM2.pdf

[Sc05] Schubert, H.: Entwicklung eines QoS-Frameworks fiir Service-orientierte Ar-
chitekturen. Masters Thesis. Hasso-Plattner-Institute for Software Systems En-
gineering, SAP Systems Integration AG, 2005

[BuOO] Burbeck, S.: The Tao of e-business Services. Emerging Technologies, IBM
Software Group, 2000

http://bpt.hpi.uni-potsdam.de/twiki/pub/Public/SeminarPublications/ReaderBPM2.pdf

[PTO6]

[TGKO06]

[Ob05a]
[Ob0O5b]
[Ob06a]
[Ob06b]

[Wi06]

[Ra97]

[DmO5]

[Is95]

[Sc98]

[KNS92]

[W304]

[Jo03]

Pulier, E., Taylor, H.: Understanding Enterprise SOA. Manning Publications
Co., 2006

Tabeling, P., Grone, B., Knopfel, A.: Fundamental Modeling Concepts - Effec-
tive Communication of IT Systems. John Wiley & Sons, Ltd, 2006

Object Management Group: UML Infrastructure Specification, v2.0, 2005
Object Management Group: UML Superstructure Specification, v2.0, 2005
Object Management Group: Meta Object Facility (MOF) Core, v2.0, 2006

Object Management Group: Business Process Modeling Notation (BPMN)
Specification, 2006

Wikipedia: Enterprise architecture, July 2006
http://en.wikipedia.org/w/index.php?title=Enterprise_architecture&oldid=64463956

Rational Software (editor): UML Notation Guide 1.1, Unified Modeling Lan-
guage Version 1.1. Santa Clara (USA), 1997

DMTEF: CIM: Common Information Model Schema Version 2.11, December
2005

http://www.dmtf.org/standards/cim/cim_schema_v211

ISO/IEC: ITU-T X.901 ISO/IEC 10746-1 Open Distributed Processing Refer-
ence Model Part 1. Draft International Standard (DIS) output from the editing
meeting in Helsinki (Finland), May 1995

August-Wilhelm Scheer: Aris-Business Process Frameworks. Berlin; New
York: Springer, 1998

G. Keller and M. Niittgens and A.-W. Scheer: Semantische Prozefmodellierung
auf der Grundlage Ereignisgesteuerter Prozeketten (EPK). Veroffentlichungen
des Instituts fiir Wirtschaftsinformatik, Heft 89, Saarbriicken, 1992

W3C: WSA: Web Services Architecture, February 2004
http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/

Henk Jonkers, Buuren Buuren, Farhad Arbab, Frank de Boer, Marcello Bon-
sangue, Hans Bosma, Hugo ter Doest, Luuk Groenewegen, Juan Guillen
Scholten, Stijn Hoppenbrouwers, Maria-Eugenia Iacob, Wil Janssen, Marc
Lankhorst, Diederik van Leeuwen, Erik Proper, Andries Stam, Leon van der
Torre, Gert Veldhuijzen van Zanten: Towards a Language for Coherent En-
terprise Architecture Descriptions. Seventh International Enterprise Distributed
Object Computing Conference (EDOC), p. 28., 2003

http://en.wikipedia.org/w/index.php?title=Enterprise_architecture&oldid=64463956
http://www.dmtf.org/standards/cim/cim_schema_v211
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

	Introduction
	Conception of the Modeling Approach
	Organizational and IT Infrastructural Aspects
	Layering Structure
	Dependency Structure
	Annotation of Enterprise Architectural Entities
	Customizable Views

	The Meta Model
	Annotations and Dependencies
	View Definition

	Case Study
	Related Work
	Conclusion

